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1. Chronological remarks. The main source for our knowledge of 
ancient astronomy is Ptolemy. His Mathematical composition, com
monly known as the Almagest, quotes observations of his own rang
ing from 127 to 142 A.D. [35; 36; 37].1 This work seems to be the 
earliest of a whole series of fundamental works, such as his Geography 
[41 ], the Tetrabiblos [39; 40], and so on, whose influence on mediaeval 
thought cannot be overrated. 

Questions of historical priority will not be discussed here. Never
theless it must be emphasized that Ptolemy relied heavily on meth
ods developed by his predecessors, especially Hipparchus. Indeed, 
almost all our information about the latter's work is based on refer
ences in the Almagest. However fragmentary our knowledge of 
Hipparchus' astronomy may be, it is evident that it represents a 
milestone in the development of mathematical astronomy. Observa
tions of Hipparchus quoted by Ptolemy extend from 162 to 127 B.C. 

Finally, we have original Babylonian ephemerides for the moon 
and the planets covering, with only minor gaps, the years from 227 to 
48 B.C. (Kugler [19; 20], Schnabel [47], Schaumberger [20], Neuge-
bauer [3l]). Nothing is known about the exact date or origin of the 
Babylonian methods though it might be a fair guess to assume a date 
between 400 and 250 B.C. 

To our knowledge, Egypt exercised no positive influence on the 
development of mathematical astronomy. This is in perfect accord 
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with the fact that Egyptian mathematics never went beyond an ex
tremely elementary level, totally unfit for the description of astro
nomical phenomena. 

2. Introduction. It is not the scope of this paper to give even a 
sketch of the historical development of ancient astronomy. I shall 
only try to illustrate the close relationship between mathematics and 
astronomy, a relationship which goes much farther than one might 
assume at first sight. I shall mention only three problems which 
seemingly would belong to purely observational astronomy but 
actually are essentially dependent upon mathematical theories. 
These problems are (a) the determination of the apparent diameter 
of the moon, (b) the determination of the constant of precession, 
(c) the determination of geographical longitude. The first two prob
lems were not solved by direct measurement but by relating them to 
the theory of the motion of the moon. It requires the whole mecha
nism of the lunar theory to compute the coordinates of the moon for 
given eclipses, especially the distance of the center of the moon from 
the center of the shadow. It is only after these elements were found 
according to the mathematical theory that the observed magnitudes 
of the eclipses are used to find the apparent diameter of the moon 
(Almagest V, 14). Similarly, the longitudes of fixed stars are not 
measured directly but are referred to the moon, and thus eventually 
to the sun, by means of occultations or close conjunctions. Again the 
whole lunar theory is required to find the common longitude of moon 
and star (Almagest VII, 3). Finally, the determination of geo
graphical longitude is based on the simultaneous observation of a 
lunar eclipse, the circumstances of which must be determined from 
theory. This last problem involves, however, another theoretical con
sideration. The ancients measured time not by means of clocks of 
uniform rate but by sun dials and waterclocks which showed "sea
sonal" hours. Seasonal hours can be simply described as an extremal 
form of "daylight saving time" because each hour is always the 12th 
part of the actual length of daylight. Thus the time reckoning is fully 
adjusted to the variation of the seasons. For civil life, this un
doubtedly has its great advantages. For astronomical computations, 
however, the reduction of seasonal hours to equinoctial hours re
quires a theory of the dependence of sun dials upon the geographical 
coordinates and the longitude of the sun. 

These examples will suffice to make it understandable that two 
groups of mathematical theory play a paramount role in ancient 
astronomy. On the one hand, a detailed celestial mechanics is needed, 
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especially for the theory of the moon; on the other hand, auxiliary 
problems must be solved, including the theory of celestial and 
terrestial coordinates, their transformation from one system into 
another, and their application to the theory of various types of sun 
dials. In short, we can say that kinematics and spherical astronomy 
play a much greater role than empirical observations. The ancient 
astronomers were fully aware of the fact that the low accuracy of 
their instruments had to be supplemented by a mathematical theory 
of the greatest possible refinement. Observations are more qualita
tive than quantitative: "when angles are equal" may be decided fairly 
well on an instrument but not "how large are the angles," says 
Ptolemy with respect to the lunar and solar diameter {Almagest 
V, 15; Heiberg p. 417). Consequently, period relations over long 
intervals of time and lunar eclipses are the main foundations so far 
as empirical material is concerned ; all the rest is mathematical theory. 
We shall see that this holds for Greek as well as for Babylonian 
astronomy. 

The fact that ancient astronomy is to a large extent "mathematics" 
has far-reaching consequences for the history of civilization. The 
Middle Ages inherited an astronomical system, and with it a picture 
of the structure of the universe, of a consistency and inner perfection 
which hardly seemed open to improvement. The bearers of the Chris
tian civilizations, at the very beginning, had lost contact with Hellen
istic science ; hence the astronomy of Western and Central Europe re
lapsed for many centuries into a primitive stage of knowledge where a 
few simple period relations sufficed as the basis of the computation of 
Easter and similar problems. Though this process was to some extent 
delayed by the continued use of astronomical tables for astrological 
purposes, the destruction of the ancient tradition would have been 
complete had not Greek astronomy found a new and most interesting 
development among Hindu astronomers. When the Arab conquest 
reached India, Greek astronomy soon saw a triumphant revival every
where in the Moslem world, thus preparing the basis for the new de
velopment of astronomy and mathematics in the Renaissance. The 
"Ptolemaic system" has often been blamed for the preservation for 
almost 1500 years of a narrow, yet much too complicated, picture of 
the world.2 It is only fair to underline the fact that this system pre-

2 It should be remarked that "Ptolemaic system" is often used in a rather un-
historic fashion. Actually the Aristotelian version of the homocentric spheres of 
Eudoxus determined the cosmological ideas of the philosophers and theologians of 
the Middle Ages. Thus a system 500 years older than the Almagest should take most 
of the blame. 
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served for the same length of time the tradition of mathematical 
methods which became most powerful tools in the hands of Coper
nicus, Tycho Brahe and Kepler. 

A. CELESTIAL MECHANICS 

3. Greek astronomy. The cornerstone of Greek celestial mechanics 
is an essentially "dynamical" principle, however metaphysical its 
actual formulation in Greek philosophical literature may sound. It is 
the idea that the circular movement of celestial bodies is the only 
movement which can last eternally. This "principle of inertia" is the 
guiding principle of all Greek astronomical theories. The fortunate 
accident that the orbits in our planetary system deviate very little 
from circles made it possible to construct geometric models whose 
gradual improvement corresponds to the addition of new Fourier 
terms, each of which has a certain physical significance. Modern 
scientists have often declared simplicity to be the criterium of truth, 
and a whole philosophy of "economy of reasoning" has offered its 
guidance to the researcher. This school of thought could rightly claim 
the early Greek astronomers as its first followers. Nothing "simpler" 
and more natural could have been assumed than the preference of 
celestial bodies for circular movements. And the remarkable suc
cesses of this assumption could only strengthen confidence in its cor
rectness. Nobody could foresee that the simplicity of the circular 
movements is due to an accidental distribution of masses or that this 
also causes the simplicity of Newton's law, conveniently hiding from 
us the effects of a general gravitational space. 

Here is not the place to describe the development of astronomical 
hypotheses, based on the combination of circular movements, or, 
originally, of movements of spheres, following an ingenious idea of 
Eudoxus. This development is described in masterly fashion by 
Duhem in his Système du monde [ l8] . We shall here restrict our
selves to a short discussion of some points in the theory of eccenters 
and epicycles in its application to the lunar movement. For the 
theory of Mercury and Venus see Boelk [3] and Schumacher [48]. 

Assuming that all circular movements proceed at constant angular 
velocity, it is obvious that an observer who is not located at the 
center gets the impression of a variable velocity. We know that al
ready Apollonius, about 200 B.C., knew that an eccentric movement 
can be replaced by an epicyclic movement, where the center of the 
epicycle moves on the deferent with the mean angular motion 
around the observer whereas the object moves on the circumference of 
the epicycle with the same angular velocity in the opposite direction. 



1948] MATHEMATICAL METHODS IN ANCIENT ASTRONOMY 1017 

The radius of the epicycle is identical with the eccentricity of the 
eccenter. Similar relations hold for more general cases and it is there
fore a matter of choice which hypothesis is used in a specific case 
(Almagest XI I , 1 and III , 3). We know, for example, that Hip-
parchus used an epicycle for the description of the solar anomaly 
(Theon Smyrnaei, De astronomiaf XXXIV [50 ]) while Ptolemy pre
ferred the eccenter because of its greater simplicity, using only one 
motion (Almagest I II , 4). 

FIG. 1 

The determination of the parameters of models of this type re
quires great ingenuity. As an example I might quote the case of the 
lunar theory in its simpler (Hipparchian) form which only accounts 
for the "first anomaly," that is, the eccentricity with uniformly pro
gressing apsidal line. To this end an epicyclic model is assumed and 
three lunar eclipses are observed, giving the true longitudes Xi, X2, X3 
at given moments tu ky k. The mean motions in mean longitude (X) 
and mean anomaly (a) are known from period relations. Thus it is 
possible to find the positions of the moon on its epicycle, expressed by 
the differences of their anomalies (cf. Fig. 1). Furthermore the cor
responding mean longitudes X; can be found for each t%. The differ
ences d=\i — %i are the corresponding values of the equation of 
center and can be interpreted as the angles under which the radii EPi 
appear from the observer (Almagest IV, 6). The solution of this 
problem, undoubtedly known to Hipparchus and discussed in de
tail by Ptolemy, is often needed in surveying; one then speaks of the 
"Pothenot" or "Snellius" problem (Tropfke [SI, V, 97]; the identity 
of these problems has been seen by Delambre [4, II , 164] and Oude-
mans [33]). As a result the radius of the epicycle can be found in 
terms of the radius of the deferent. Thus the eccentricity of the 
lunar orbit is known. 

Before we proceed to Ptolemy's addition to Hipparchus' theory of 
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the moon we might for a moment discuss the often underlined con
trast between the simplicity of Kepler's theory and the clumsiness of 
eccenters and epicycles. Actually one compares here theories of dif
ferent level. If one accepts the statement that the earth or the moon 
travels on an ellipse, one disregards perturbations and describes the 
true longitude in first approximation by 

X = X + 2e sin a, 

where a is the mean anomaly. But exactly the same relation holds for 
an eccenter, or the equivalent epicycle, if its eccentricity is 2e. If 
we want to take the movement of the apsidal line into account, again 
both models are equivalent because a uniform rotation of the apsidal 
line must be added in both cases. The error of the ancient theory 
does not at all lie in its unnecessary complication but in its simplicity, 
which leads only to correct longitudes whereas the distances are very 
badly represented, especially near the apogee. Because the observa
tion of distances requires the measurement of very small angular dif
ferences for parallax or apparent diameters, this part of the theory 
was very difficult to check. Consequently one distrusted the observa
tion of small angles even in cases where one should have found the 
discrepancy and preferred a simpler model to added corrections. For 
the longitudes, however, the ancient theory is exactly as simple and 
as efficient as Kepler's theory within the same first order approxima
tions. 

As was mentioned in the preceding remarks, the fundamental 
parameters of the lunar theory were obtained from eclipses, thus for 
syzygies. Already Hipparchus started to test the theory also for inter
mediate quadratures, and observations of his, quoted by Ptolemy 
(especially Almagest V, 5; Heiberg p. 369), showed that the "mean 
apogee" of the epicycle, from which a has to be counted, cannot be 
considered fixed. Ptolemy further investigated this situation and 
constructed a model which coincides with the simple theory in the 
syzygies and shows the proper fluctuation of the longitudes in the 
quadratures, depending on mean anomaly a and double mean elonga
tion 2e. The corresponding term a-sin (2e—a) in the modern theory 
is called "evection." Because the value of the constant a is about 1 ;16° 
whereas 2e = 6;17°, we have for the syzygies and quadratures respec
tively3 

X = X + 6;17°sina + l ;16°s ina 

which shows that the maximum of the equation of center varies be-

3 1 use the notation a,b\c for a-óO-f-è+cóO"1. 
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tween about 5;1° and 7;33°. The Ptolemaic values are 5;1° and 
7;39° respectively (Almagest IV, 10, and V, 8). Also for intermediate 
elongations and anomalies Ptolemy's representation of the longi

tudes is very good (Kempf [IS]). His model is described by Fig. 2. 
In order to obtain the necessary increase of the equation of center 
from conjunction towards quadrature, he moves the lunar epicycle 
closer to the observer 0, by letting A travel on a circle around 0 
such that A has the elongation 2e from the mean moon E. Simul
taneously the oscillations of the anomaly are obtained by introduc
ing a "mean apogee" A from which a is to be counted. The position of 
A is defined by means of the rule that "AE always points towards the 
point N which is diametrically opposite to A on the circle with center 
0. 

If we want to compare this model with a geometric representation 
of the modern theory, using the same degree of approximation, we 
have to represent the evection as follows (Möbius [24]). The center 
C of the elliptic orbit rotates around the mean center C on a circle of 
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radius ë/5 (where OC = ë) with an angular velocity which is twice the 
velocity of the elongation of the mean sun from the mean apsidal 
line of the lunar orbit. Hence not only the apsidal line but also the 
eccentricity varies according to position and length of OC. Translat
ing these movements into the language of eccenters and epicycles one 
obtains a model which closely resembles Ptolemy's construction, 
though with the essential difference that the radius of the epicycle 
must be made a function of a. Again one sees that Ptolemy's model is 
not too complicated but too simple because it represents only the 
longitudes correctly at the expense of the distances. 

4. Babylonian astronomy. The final goal of Greek and Babylonian 
astronomy is, of course, identical. Starting from a few empirical ele
ments one wishes to be able to compute the positions of the celestial 
bodies for any given moment. One may say with equal right that the 
progress, or the error, of the Greek method consisted in the invention 
of an intermediate step, namely the construction of a "dynamical" 
model, based on circular movements. From this model the Greeks 
derived their numerical tables exactly as a modern "Nautical Al
manac" is derived from computations which are determined by conse
quences of dynamical rules and certain empirically determined initial 
values. As far as we can say from the material available to us, it seems 
that no such theoretical model existed in Babylonian astronomy. 
One apparently tried to obtain, on purely mathematical grounds, the 
rules for the computation of the tables from the empirical data. To 
use modern terminology the Babylonian procedure is very close to 
harmonic analysis. Given periodic phenomena of a rather complex 
character; find simple periodic functions, whose combination de
scribes, within given limits of accuracy, the observed phenomena. 
While in our harmonic analysis the basic periodic functions admit, 
at least in principle, a direct geometric interpretation by simple 
harmonic oscillations, no such interpretation is obvious for the func
tions used in Babylonian astronomy. We do not know what were the 
Babylonian concepts about the physical structure of the universe. 
It seems safe to say that whatever concepts might have existed they 
were not directly reflected in the mathematical methods for the lunar 
and planetary movements. 

The fundamental tools of Babylonian astronomy are periodic dif
ference sequences of first and higher order. The simplest case is repre
sented by tables in which each line represents a certain moment, these 
moments being equidistant, for example, one mean synodic month 
apart. The tabulated values can therefore be represented as a func
tion f(n) for integer values of the argument. Linear interpolation 
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then leads to a continuous function f(n) whose graph looks like Fig. 
3. We shall call such functions "linear zigzag functions." The period 
of the function ƒ(x) may be called P and it is obvious that 

P = 2A/d 

where A is the amplitude and d the slope of the increasing branch. 

FIG. 3 

The tabulated values f(n) have, of course, in general a much larger 
period than P because P is in practice never an integer. If 

p = 2A/<2 = ir/Z 

where T and Z are relative prime integers, we see that 7r = P Z is the 
smallest integer after which the sequence f(n) repeats all its values. 
We thus call ir the "number period," Z the "wave number," that is, 
the number of waves of length P contained in 7r. Ordinarily TT is a 
large number. If we, for example, know that one year contains 
12;22,8 mean synodic months we have 12 ;22,8 = 46,23/3,45 which 
shows that TT = 46,23 = 2783 and Z = 3,45 = 225. This means that 
"2783 mean synodic months = 225 years" is the smallest period 
relation on which a zigzag function with P = 12;22,8 is built. 

Functions of this type are especially used in the lunar theory. Two 
coexisting "systems" are known. One, called "System B," uses for 
the variable solar velocity a linear zigzag function; "System A," how
ever, assumes a constant solar velocity for an arc of the ecliptic, 
with a discontinuous change to another value, constant on the re
maining arc. The assumption of system B seems much more natural 
than the very bold assumption of sudden jumps in the solar velocity. 
Actually, however, the theory of system B is much more involved 
in its purely mathematical consequences. The reason can be outlined 
as follows. Let ƒ(/) be a periodic function of t, for example, the latitude 
of the moon, represented by a linear zigzag function of period p0. An 
"ephemeris" is a table of values of ƒ(/) for equidistant values of 
/, for example, for all mean conjunctions. If the solar velocity varies 
from a value w to W then the lunar velocity must also vary from 
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360+w to 360+TV in order to maintain the same mean distance be
tween conjunctions. On the other hand the anomaly of the sun must 
not influence the mean distance between consecutive nodes. Develop
ing the consequences of this requirement one finds that the tabulated 
values of ƒ(/) again form a linear zigzag function but with difference 
d where the solar velocity is wt and with difference D where the solar 
velocity is W. I t then holds that 

A Y 
D- d = (W - w) 

3,0 po Y + 1 
where A is the amplitude of ƒ(/) and Y the length of the solar year. 
This formula shows immediately the essential difference between the 
systems A and B. If the solar velocity is restricted to two values only, 
fixed in their relation to the ecliptic (system A), then two differ
ences suffice for the computation of ƒ(/). If, however, the solar 
velocities form a linear zigzag function (system B) then the same 
holds for the differences of ƒ(/) and ƒ(/) is a difference sequence of 
second order (Neugebauer [27]). Because we are actually dealing in 
these tables with arithmetical functions, instead of continuous func
tions, it is not at all trivial to determine the parameters of the zigzag 
function g(n) of the differences of f(n). The solution of this problem 
is found by considering mean periods and mean differences, taken 
over a whole number period. The mean value fx0 of g is then defined by 

1 - po 
fjL0 = 2 A = do 

Po 

where d0 is the mean slope of f(n). Arithmetical problems of this type 
were obviously the reason for assuming in system A a discontinuous 
change in the solar velocity at two points only instead of adopting 
the model of system B with its much greater mathematical complica
tions. 

In dealing with difference sequences of second order, Babylonian 
astronomers came close to problems whose importance was again seen 
only in the early days of the development of calculus. As an example 
may be quoted two sequences in system B, called H and J, whose 
astronomical significance is here without interest. H is a linear zigzag 
function with minimum 0 and maximum A^. The values of H are 
the differences of J. The mean value of J* is 0 and its amplitude is 
determined in such a way that increasing branches change to decreas
ing branches and vice versa whenever H is zero. In other words H be
haves like the derivative of J". Fig. 4 shows in the lower part the 
function H, in the upper part the function J. I have chosen an 
example where an error has occurred at the decreasing branch of the 
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second wave of J. The correct value (dotted line) would have been 
negative. Instead, the computer took the positive sign and continued 
thereafter according to the rule. Our graph shows how strongly the 
shape of the curve is affected by this error. On the other hand, it 
underlines the agreement between the extrema in J and the zeros in 

"\/\/\/\/y 
FIG. 4 

H in the normal case though we are dealing only with discrete values 
and not with continuous functions. The question arises how one 
could determine the amplitude A/ of a sequence of discrete values 
to a given function H such that nevertheless a behavior of this type 
was achieved. The answer can be given as follows. We simply require 
that the relation between H and J be correct "in the mean" over the 
whole number period r of H. In an interval of length x the function 
J must oscillate, for example, from maximum to maximum Z/2 
times because two waves of H correspond to one oscillation of / . 
The total change of values of J, caused by H, is the total of all dif
ferences, thus ]^iî=/xx where /x is the mean value of H. This total 
change for a single wave of J is 2Aj. Thus we have 

2A/-Z/2 = txw or 
Aj = fiir/Z. 

This is actually the relation which is satisfied by the parameters of 
the sequences found in lunar ephemerides. 

Many examples could be quoted for the extensive use which 
Babylonian astronomers made of difference sequences to represent 
periodic functions. We have examples of modified zigzag functions. 
The main part increases or decreases linearly. In order to avoid, 
however, the sharp change of direction at the extrema, sequences of 



1024 O. NEUGEBAUER [November 

second order which bridge the neighborhood of the extrema are 
constructed. 

The idea of operating with interpolations obviously influenced the 
whole procedure of describing planetary movements. Apparently no 
attempt was made to find the longitude X of a planet directly as 
function of t. The following very clever indirect method was in
vented. Instead of dealing with the total motion, single "phenomena" 
were considered as if they were independent celestial bodies. In the 
case of Mercury, to mention a specific example, four phenomena are 
considered: first and last appearance as morning star, and first and 

FIG. 5 

last appearance as evening star. Now, for example, the first appear
ance as evening star is taken independently, and rules are given to 
compute tables for the dates and longitudes of this single phe
nomenon. Here again, there exist different "systems" for the descrip
tion of the dependence of these coordinates on the zodiac, that is, 
implicitly on the longitude of the sun. We have cases of step func
tions or linear zigzag functions, obviously several systems being used 
for the same planet. After the coordinates of one phenomenon were 
found for a period of time, the coordinates for the remaining phe
nomena were computed in a similar way, though generally with 
different functions, for the same period. The result is a complete list 
of all phenomena which now could also be read in their natural 
order. Finally, interpolation is used for the coordinates of the planet 
for intermediate dates. 

This whole procedure can best be illustrated in an example for 
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Mercury (cf. Fig. 5). In the first step all points S» were computed. 
Three different zones of the zodiac are distinguished such that the 
distances between consecutive points S depend upon the zone to 
which they belong. Different zones determine the distribution of the 
points IV Eventually, the points Q< and 2< can be found from the 
corresponding points Ei and I \ respectively. Thus we end up with a 
sequence of irregularly distributed points near the straight line 
which represents the movement of the sun. The variability of the 
distances between these points causes also variable differences be
tween consecutive points for different phenomena, for example, Ö and 
T. Because the planet is retrograde between £2 and T, this indicates 
different velocities of rétrogradation. In order to find these velocities, 
schemes of interpolations are used. Fig. 6 shows an example; the 

ABk 

2°/4 

FIG. 6 

retrograde motion is represented by the constant velocity — 0;6 de
grees per day. Another section of constant velocity ( + l;450/d) is 
assumed from 2 to S. In both sections the planet is near the sun and 
therefore invisible. For the other parts of the orbit, linearly variable 
differences are used (except for small irregularities near the end 
points, probably due to the practical requirement of relatively round 
numbers for the interpolation). As a result, day-to-day positions 
(Fig. 7) which represent a very satisfactory representation of the 
actual movement are obtained. It is clear that these methods require 
the knowledge of the summation formulae of arithmetic progressions. 

These examples suffice to characterize the principle methods of 
Babylonian astronomy. For details of the planetary theory one may 
consult Kugler [20 ], Pannekoek [34], van der Waerden [52; 53]. 
The historical influence of these arithmetical methods is very great. 
They opened, for the first time, the way for a consistent numerical 
treatment of astronomical phenomena. This influence is still felt to
day in the use of sexagesimal units in the measurement of time and 



1026 O. NEUGEBAUER [November 

angles. In antiquity this influence was much more strongly visible in 
many cases which have left no trace in the modern development. 
Ptolemy's table of refraction, for instance, assumes that the angles 
of the reflected ray form a second degree sequence as function of the 
angle of the incident ray (Lejeune [2l]). Babylonian methods are 
predominant in astronomical computations for astrological purposes 

in ' iv v^ vT1 7 
FIG. 7 

for the obvious reason that they are easier to handle and do not 
require full understanding of complicated geometrical models. Greek 
papyri (Knudtzon-Neugebauer [17], to be supplemented by P. Ryl. 
27 [14]) show the use of Babylonian period relations. Ancient and 
mediaeval geography was deeply influenced by concepts based on 
Babylonian methods. We shall return to these "linear methods" in 
the next section. 

B. NUMERICAL AND GRAPHICAL METHODS 

5. Introduction; the linear methods. The fundamental role of the 
eccenters and epicycles for Greek astronomy and the dramatic his
tory of the discussion of these geometric assumptions in the Renais
sance have left us with the impression that Greek astronomy was 
mainly geometrical in character. Though it is evident that the Greek 
astronomers must have felt that their models somehow reflected 
physical facts, at least in theory the geometric models were only the 
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tools for the computation of tables. Consequently we find many 
tables in the Almagest whose construction involved an enormous 
amount of numerical work. According to the contents they fall 
naturally into tables for spherical astronomy (chords, rising times, 
zenith distances, and so on), tables for the sun (mean motion, equa
tion of center), for the moon (mean motion for longitude, anomaly, 
argument of latitude, anomaly, equation of center, evection, parallax, 
mean conjunctions, eclipses) and for the planets (mean motion, 
anomaly, stationary points, elongation, latitudes, heliacal risings and 
settings). 

The Babylonian influence on Greek numerical methods is obvious 
from the use of the sexagesimal division of all units. Unfortunately 
this influence did not fully penetrate all computational steps. Thus 
often we find fractions expressed by means of unit fractions, replacing, 
for example, 0;42 by 1/2 + 1/5. Though this notation never occurs in 
tables, it influenced the accuracy of single calculations because fre
quently results are rounded off in order to obtain simple unit frac
tions. Thus, for example, Ptolemy finds in Almagest IV, 6 the value 
5;13 or 5 ;14 for the radius of the lunar epicycle (Heiberg [35, pp. 
313 and 322]) but he later always uses 5 1/4( = 5;15) as a round 
value. In general it must be said that the ancients were little con
cerned about the influence of rounding off and accumulated errors. 
Often the errors are of the same order of magnitude as the effect 
under consideration. Apparently it was only under the influence of 
modern analysis that we have learned to consider the evaluation of 
errors as an essential part of numerical methods. On the other hand 
it must be said that, for example, excellent approximations of square 
roots were developed very early. The Babylonians of the second 
millenium B.C. already used alternating geometric and harmonic 
means (Neugebauer [26, p. 33 ff.]) and many values in the Almagest 
can be explained by this method. It would not be surprising if this 
technique reached the Greeks together with the sexagesimal system 
and it might be significant that the value 21/2 = 1;21,50,10 is not only 
found in cuneiform records (Neugebauer-Sachs [32, p. 32]) but is 
used by Ptolemy in the computation of the chord of 90° (Heiberg 
[35, p. 35, 15]). 

The arithmetical methods of the Babylonian astronomers are also 
discernible in another field of ancient astronomy. We have already 
mentioned the "seasonal hours" for ancient time measurement which 
thus requires a knowledge of the law of variation in the length of 
daylight whenever astronomical computation with equinoctial hours 
was needed. For the Babylonian astronomers the length of daylight 
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was of great importance also because one of the main goals of their 
lunar theory was the prediction of the evening of first visibility of 
the new crescent of the moon after conjunction. This evening defined 
the beginning of a new month and consequently the whole calendar 
depended on this problem. For its solution the knowledge of the 
moment of sunset is, of course, required. Because the length of day
light is the time from sunrise to sunset, one also may ask for the time 
it takes the semicircle of the ecliptic from X to X + 180 to rise if X is 
the longitude of the sun at the given moment. A month later the 
longitude of the sun will be given roughly by X+s where 5 = 30° is 
the length of one zodiacal sign. Now the length of daylight is the ris
ing time of the semicircle from X+s to X+s + 180. Its value can be 
obtained from the previous value by adding the rising time of the 
zodiacal sign 5+180 and by subtracting the rising time of s. Hence 
we see that the length of daylight can be found if the rising times of 
ecliptic arcs are known. The rising time of a given arc of the ecliptic 
depends obviously on its variable inclination to the horizon. To ob
tain an insight into the relationship between rising times, seasons and 
geographical location can be called the central problems of early 
Greek spherical astronomy. Its complete solution is found in the 
tables of the Almagest where the rising times are given for every 10 
degrees for all latitudes whose longest daylight varies between 12h 

and 17h in steps of l /2 h . 

Ptolemy already makes full use of spherical trigonometry. The 
Babylonian astronomers, however, used also here arithmetical 
schemes to describe the values of the rising times of the zodiacal 
signs as function of the longitude. Two methods were developed: a 
crude approximation related to system A of the solar theory, and a 
more refined scheme in system B. Both are built on arithmetical 
progressions. The Greeks expanded these methods by varying the 
parameters linearly, thus introducing geographical zones of given 
length of daylight, known as "climates." This concept remained 
fundamental for ancient and mediaeval mathematical astronomy 
(Honigmann [13], Neugebauer [29]). Ptolemy himself uses the rising 
times of system A in the Tetrabiblos ([40, I, 20 p. 94-95]; [39, I, 21 
p. 46]) and thus contributed to securing the survival of Babylonian 
methods for many centuries. 

6. Spherical trigonometry. The lack of a convenient algebraic nota
tion prevented the Greeks from condensing the solution of a general 
triangle into a single formula instead of solving two right triangles. 
Of greater consequence was their use of chords in a circle of radius 
60 instead of the trigonometric functions. Consequently their plane 
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trigonorc 

(i) 

(2) 

(3) 

(4) 

ïetry is expressed in the relations 

c 
a = crd(2a), 

120 
b = — crd(180 - 2a), 

120 

a crd(2a) 

T ~ crd(180 - 2a) ' 

c* = a2 + b\ 

Tables for crd a are given, for example, in Almagest I, 11 in steps of 
1/2° and with an accuracy of two sexagesimal places. Their computa
tion is based on the so-called Ptolemaic theorem for a quadrilateral 
and its diagonals inscribed in a circle. 

As plane trigonometry is described by the four above relations (1) 
to (4), so spherical trigonometry contains four similar relations which 
we may describe in our symbols by 

(la) sin a = f {a, c), 

(2a) cos a = g(b, c), 

(3a) tan a = h(a, b)t 

(4a) cos c = cos a cos b. 

Menelaus, about 100 A.D., already knew that a spherical triangle is 
determined by its angles (Spherics I, 18 Krause [18, p. 138]). Yet 
relations of the type 

(5a) cos a = 4>(a, /3), 

(6a) cos c = ^(a, £) 

do not seem to have been discovered before the Arabs. 
In general, it is my impression that spherical trigonometry was 

completed rather late in the development of Greek science. Its prob
lems and methods were exclusively determined by astronomical 
needs and astronomical concepts. This is obvious in the earliest 
treatises, about 300 B.C., by Autolycus [2] and Euclid [9], but it 
also holds for Theodosius ([49], Schmidt [46]), who probably was a 
younger contemporary of Hipparchus (Ziegler [56]). The astro
nomical importance of parallel circles certainly contributed to obscur
ing for a long time the necessity of restricting oneself to great circles, 
a discovery which very well may have been Menelaus' great con
tribution. Even Ptolemy did not yet have a clear concept of the 
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possibility of replacing spherical triangles by plane triangles. In the 
computation of the components of parallax in Almagest V, 19 
(Heiberg [35, p. 456 f.]), he treats a right spherical triangle with one 
very small angle, but with two large sides, as if it were a plane tri
angle in order to find the second angle at the small base, though this 
is just the case where also the second angle is very close to 90°. I t 
has often been conjectured that already Hipparchus was able to 
solve problems of spherical trigonometry. This seems rather im
plausible in view of the above-stated facts, and indeed we shall see 
(p. 1036) that there existed methods to avoid completely spherical 
trigonometry. Hence I see no reason for assuming that the central 
theorem of ancient and Arabic spherical trigonometry, the "Menelaus 
theorem," was known before Menelaus. That its two forms are not 
independent was remarked by Theon ([43, p. 569], Rome [44]). 

7. The "Analemma." At least since the early part of the third 
century B.C., astronomers were able to predict solar and lunar posi
tions with a high degree of accuracy. In particular, the longitude of 
the sun could be considered as known for any given date. Ecliptic 
coordinates, however, are not directly visible in the sky. The daily 
rotation moves all celestial objects around the pole of the equator, 
and thus relates the measurement of time to equatorial coordinates. 
Yet local noon is again determined by the sun and thus, by the rela
tion of ecliptic coordinates to the local coordinates of the observer, 
horizon and meridian. All these coordinates play a role in the practical 
measurement of time by means of sun dials, the simplest form of 
which is the vertical "gnomon" on a horizontal plane. Finally, differ
ent observers had to establish their relative positions through the 
determination of their geographical coordinates. I t is therefore no 
great wonder that we can observe that ancient astronomers concen
trated a great deal of attention on the theory of spherical coordinates 
in their relation to celestial and terrestrial objects and the theory of 
sun dials. 

Ptolemy's role in this branch of astronomy can be well appreciated 
because we have not only a work of his own, called the Analemma 
([38, p. 187 ff.], Luckey [22]) but we also know a little about his 
predecessors. We can see that Ptolemy had all the essential methods, 
inherited from earlier times, but loaded down with historical relics 
which made their application unnecessarily clumsy. Ptolemy rational
ized the whole procedure, down to the smallest details. First of all, 
he introduced coordinates whose mutual relations are independent of 
the geographical position. We consider the octant of the celestial 
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sphere which contains the sun S, and whose vertices are the zenith Z, 
South S, and East E (cf. Fig. 8 left). From each of these points we 
draw a great circle to the sun, calling the respective arcs "descensivus" 
(«zenith distance), "horarius" and "hectemoros." Each pair of these 
arcs may be used to determine the position of the sun. 

FIG. 8 

This perfectly symmetric arrangement can be compared with the 
older system. There the position of the sun was given by the horarius 
and the arc of the equator from E to the plane of the horarius. Only 
for the equinoxes does this arc end at the sun (then being identical 
with the hectemoros), but ordinarily it meets the horarius in a point 
which is not only different from the sun but which also depends on 
the geographical latitude of the observer. Another pair of "old" co
ordinates was descensivus and "antiskion," that is, the azimuth of the 
direction of the shadow counted from S to D. 

Ptolemy now treats in great detail the methods to determine his 
coordinates for a given solar position. The right part of Fig. 8 de
scribes his solution for the hectemoros. Let the circle around 0 be 
the plane of the meridian. The geographical latitude of the observer 
determines the inclination of the equator, and from the solar tables 
we can find the longitude of the sun for the given moment. As we 
shall see presently, this also determines the position of the path of 
the sun, henceforth called its "daily circle." Its intersection with the 
plane of the meridian may be CB. Ptolemy now proceeds in the typ
ical fashion of "descriptive geometry." He revolves the plane of 
the daily path of the sun about its trace CB into the plane of the 
meridian. C is the culminating point; vertically above A, we have the 
given position Si of the sun which rose at R, the arc BR being below 
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the horizon. Because A is the orthogonal projection of the sun onto 
the plane of the meridian, we know that A belongs also to the plane 
of the hectemoros. Because also 0 belongs to both the plane of the 
meridian and the plane of the hectemoros we have in OAH the trace 
of the plane of the hectemoros in the plane of the meridian. Per
pendicular to this trace is the line OE where E represents the East 
point of the horizon, revolved about OH into the plane of the 
meridian. The distance A Si is a true distance. Using it as a radius we 
find on the celestial sphere 22, which gives the position of the sun in 
the plane of the hectemoros, turned into the plane of the meridian. 
Thus the arc E 2 2 is the true "hectemoros" we wanted to find. 

FIG. 9 

A similar procedure can be followed for the other angles. The 
method consists, in general, in constructing first the Cartesian co
ordinates of the sun with respect to the fundamental planes of the 
octant ZSE and then revolving the Cartesian coordinate planes about 
the coordinate lines in order to get the angles in true size. 

I t follows from the preceding discussion that the whole construc
tion of all Ptolemaic coordinates requires only the main circle with 
center 0 and the parallel circle whose diameter CB is determined by 
the time of the year, that is, by the longitude of the sun. Ptolemy 
thus proceeds to construct a nomogram whose central part is the 
great circle with center 0. Added are half circles of the type BC cor
responding to the solar path from month to month. This system of 
circles is mounted on a turntable with various scales for the reading 
of the angles. This makes it possible to bring the equator in the 
proper position towards a given horizon. Rectangular plates placed 
on the proper points of the scales then allow the direct determination 
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of the angles required (cf. for details and for a figure Luckey [22]). A 
mechanized age can only be delighted with the extremal efficiency 
of this apparatus, of which nothing has come down to us except for 
an incomplete description in a Greek palimpsest and a poor Latin 
translation by William of Moerbeke. 

Ptolemy is not the inventor of descriptive geometry. More than a 
century before his time, Vitruvius describes in his De architectures the 
Analemma in connection with the construction of sun dials ([54]). 
From Vitruvius we also learn how to determine graphically the path 
of the sun for a given longitude X. Let the circle around 0 again be 
the meridian (Fig. 9) ; then the trace ON of the equator is given for 
a given place. If e denotes the obliquity of the ecliptic, we also know 
the trace OF of the ecliptic. Revolving the plane of the ecliptic into 
the plane of the meridian we find the vernal point V on the end point 
of the radius 0 V perpendicular to FO. Hence 2 is the sun for given 
X, and FB the trace of its path. If we divide RC into six equal parts 
we have the position of the sun for each seasonal hour from sunrise 
(R) to noon (C). 

The theory of sun dials leads to the solution of two problems in the 
history of mathematics, problems whose fame is inversely propor
tional to their interest: the date of Heron of Alexandria and the 
origin of the conic sections. 

I t is in itself of very little importance to establish accurately the 
date of a rather mediocre author whose role in the history of science 
is due only to the fact that so much else is lost. Yet it is somewhat 
unsatisfactory to know no more about an often quoted writer than 
that he lived sometime between —200 and +300. It is therefore a 
pleasant side result of the study of an analemma, described by 
Heron in his Dioptra ([12], Rome [42], Neugebauer [28]), to see 
that the elements which he quotes for a lunar eclipse fit exactly one 
and only one eclipse between —200 and +300, namely the partial 
eclipse (magnitude 8 digits) of A.D. 62 March 13. I t is extremely 
plausible to assume that the writing of the Dioptra fell close to the 
occurrence of this eclipse. This is indeed the only excuse for selecting 
an example whose date coincides almost with equinox, because the 
main problem in the analemma discussed by Heron consists in reduc
ing local seasonal time of one place (Rome) to the local seasonal time 
of another locality (Alexandria); this problem loses its importance 
only twice a year, namely at the equinoxes, when seasonal time and 
equinoctial time coincide. Only the desire to quote a real eclipse, 
which had occurred recently, can have led to quoting as an example 
a date which fell only a few days before equinox. If we thus must 
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place Heron into the end of the first century A.D. we support at the 
same time an argument of J. Klein [16, p. 135, note] who conjectured 
that Heron and Diophantus were contemporary, both belonging to 
the time of Nero. 

For us the interest in Heron's analemma consists in the direct 
relationship it establishes between astronomy and mathematical 
geography. The only method in antiquity to determine the geo
graphical longitude of a place consisted in using lunar eclipses as time 
signals. The comparison of two local seasonal times is made by 
Heron by means of a hemispherical sun dial combined with an 
analemma of the Vitruvian type. Its main idea is to use the ana-
lemma for each place and thus to find the position of the local merid
ian with respect to the sun. Transferring the results into the hemi
spherical dial gives directly the angular difference between the 
meridians. This is one of several examples which show the intimate 
combination of geometrical construction and the direct use of globes 
or hemispheres in Greek astronomy. In general it may be said that 
Greek mathematics is often much less "pure" than is generally 
assumed. 

This latter remark might be kept in mind when we try to relate 
one of the most interesting subjects of Greek geometry, the conic 
sections, to an astronomical origin. It is well known that these curves 
were defined by Apollonius (about 200 B.C.) as the intersection of a 
circular cone by planes of variable inclination, whereas the "old" 
geometers considered only right circular cones, intersected by a fixed 
plane perpendicular to one generating line. The different types of 
these curves were obtained by varying the angle at the vertex (cf., 
for example, Heath [l]). This definition suggests immediately that 
its origin is to be sought in the fixed right angle between the gnomon 
and the receiving plane of the shadow. Indeed, we have only to point 
the gnomon towards the culminating point to obtain exactly the con
figuration required (Neugebauer [30]). The sun travels on its "daily 
circle," its rays form the right circular cone, whose vertex is the 
tip of the gnomon. At noon the gnomon falls into one generating line 
and the receiving plane is perpendicular to it. The shadow describes 
a hyperbola. The natural question, namely, how these curves depend 
on the declination, is equivalent to asking how the angle at the vertex 
of the cone influences the shape of the curve. This is exactly the 
form in which the conic sections were studied by Menaechmus (about 
350 B.C.). 

8. The "Planisphaerium." The importance of spherical astronomy 
is reflected in the manifold of mathematical tools developed in order 
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to solve its main problems. Eventually spherical trigonometry super
seded all other methods which were, in all probability, invented be
fore spherical geometry was sufficiently far advanced to reach numer
ical results. At that early stage the methods of descriptive geometry, 
reflected in the Analemma, might seem the most natural way to trans
form arcs on the sphere into arcs of one plane. Another work of 

FIG. 10 

Ptolemy, the Planisphaerium ([38, p. 227-259]; Drecker [5]), shows, 
however, that also stereographic projection was known, in particular 
its important quality of mapping circles into circles, straight lines 
included. No proof is given for this fact by Ptolemy, a clear indication 
that he is operating on well known grounds, developed long before 
his time. 

The projection chosen maps the whole sphere onto the plane of the 
equator with the south pole as center of projection. In order to de
termine the center and the radius of the image of a circle, descriptive 
methods are again employed. As a simple example might be quoted 
the determination of the solstitial circles and of the ecliptic. Let dbgd 
be the equator (Fig. 10) ; we then consider the same circle also as a 
picture of the meridian, turned about the diameter ag into the plane 
of the equator. Consequently d represents the south pole. Let gh = gn 
= e = 23;51°. The point h is therefore a point of the diameter of the 
winter solstitial circle, n of the summer solstitial circle. Their projec
tions from d are k and t respectively. Because all parallel circles have 
their center in e, the images of both circles are found. Because the 
ecliptic must be represented by a circle touching the solstitial circles 
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in / and m respectively, also this circle is known. It is then proved 
that the straight line bd, b and d being the equinoxes, passes through 
e, a general relation which is often used in the following for intersect
ing great circles. The conformity of the mapping was apparently 
unknown. 

The main goal of the whole procedure is the determination of the 
rising times for the zodiacal signs. In order to find the representation 
of these signs one has only to construct the parallel circles of given 
declination by the same method which was used for the solstitial 
circles. The declinations of given ecliptic points are considered known, 
but it is in principle important to remark that they can also be found 
by geometric construction, namely from the "daily circle" in the ana-
lemma (cf. above p. 1031). Finally it is easy to construct the circle 
which represents the horizon for a given latitude. The variable 
positions of the ecliptic with respect to the horizon at different times 
of the year are in our projection represented by different positions of 
the horizon circle with respect to the fixed image of the equator-
ecliptic system. In order to find the rising times of a given arc of the 
ecliptic we have only to construct the two positions of the horizon 
passing through its end points. These two horizon circles intersect 
the equator in two points whose angular distance is the rising time 
in question. Because angles on the equator are represented without 
distortion, our problem is solved by this construction. 

The above description shows that the "planisphaerium" could be 
used for a purely graphical or mechanical solution of problems of 
spherical astronomy. This was indeed the use made of this method 
especially by the Arabs whose "astrolabes" are based on the projec
tions described here (Drecker [6] and [7], Michel [23]). In Ptolemy's 
treatise, however, a different attitude is taken. The geometric con
structions are only used for transforming spherical problems into 
problems of plane geometry which then are solved numerically by 
means of plane trigonometry. Obviously we have here before us the 
method used before spherical trigonometry was invented, that is, 
before the Menelaus theorem was known. 

Much speaks in favor of the assumption that the planisphaerium 
was the tool of Hipparchus (Delambre [4, II p. 453 ff.], Drecker 
[6, p. 16 ff.]). All computations are based on the latitude of Rhodes, 
where Hipparchus made his observations. Synesius of Cyrene ascribes 
the invention of the "astrolabe" to Hipparchus (FitzGerald [10, p. 
263]); this statement is certainly to be taken seriously in view of the 
fact that Synesius was a pupil of Hypathia, who collaborated with 
her father Theon on the commentaries to the Almagest (Rome [43, 
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p. LXXXII I ] ) . Finally, Hipparchus determines the positions of stars 
by a combination of ecliptic and equator coordinates (Vogt [55]); he 
takes the longitude of the point where the circle of declination through 
the star meets the ecliptic and then uses the remaining declination as 
second coordinate. This system finds its direct explanation in the 
planisphaerium : the first coordinate is given on the image of the 
ecliptic whereas the circles of declination are mapped into radii. 

9. Map projection. The work of M2ik and Hopfner [25] has given 
us a good understanding of Greek mathematical geography as con-

FIG. 11 

tained in the first book of Ptolemy's Geography. I shall give a short 
summary, using modern terminology, which will suffice to show how 
far the Greeks had come in the general problem of mapping a sphere 
onto a plane. From the earlier development we only know that 
Ptolemy's predecessor, Marinus (about 100 A.D.), used a cylinder 
projection which can be described by 

y = 0, x = X cos 36° 

where x and y are the Cartesian coordinates of the map, <j> the geo
graphical latitude, X the geographical longitude, and 0 = 36° the lati
tude of Rhodes. Obviously this projection preserves latitudes on all 
meridians and longitudes for the parallel of Rhodes. 

Ptolemy introduced two types of conic projection. In the first type 
he maps meridians on radii, parallels of latitude on circles with center 
O (Fig. 11). In order to determine the parameters of this mapping 
three conditions are imposed. We introduce polar coordinates r and 
0, and call $ = 90—<£ the colatitude. 

Condition 1 : preservation of length on all meridians 

(1) r = <t> + c. 

Condition 2: preservation of length for the latitude 02 = 36° of 
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Rhodes. Thus 

or from (1) 

(2) 
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r($2)'0 = sin 0 2 X 

sin <52 
0 = — X. 

[November 

<?2 + C 

Condition 3: preservation of the ratio of lengths on the parallels 

0< 

FIG. 12 

of Thule (0i==63) and on the equator (03 = 0). Hence c can be de
termined from 

(3) 
sin $i #i + c 

sin #3 $3 + c 

I t is obvious that this projection is an improvement of Marinus' 
simple cylinder projection. 

The second type of conic projection, proposed by Ptolemy, assumes 
that both meridians and parallels of latitude are represented by 
circles. We again use polar coordinates (Fig. 12) but only the circles 
r = const, now have geographical significance as images of circles of 
constant latitude. The radii, however, are no longer meridians. Never
theless it is required that length is preserved on all radii. Thus we 
have 

(4) r = <? + Co 

where c0 is an arbitrary parameter which gives the value r = r0 of 
the image of the equator. In order to determine the circles which 
represent the meridians we need three points. Thus we can impose 
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the following three conditions: preservation of length on each of the 
following three parallels <£i = 63 (Thule), $2 = € = 23;50 (Syene in 
Egypt), and $3= — 16;2S (0 = 16;25 is the latitude of Meroe on the 
Upper Nile). Thus 

(5) r(fi)'0*= sin ft. 

For a given value of X we can find three values of 6 by substituting 
in (5) the values ft = 27, ft==66;10 ft = 106;25. The values r(ft) 
are similarly given by (4); thus we are able to construct the circle 
P1P2-P3 which represents the meridian X. If (5) were assumed to hold 
for all latitudes, the meridians would no longer be circles but we would 
obtain the Bonne projection, which is preserving length in radial 
direction and on all parallels. 

In concluding, I want to repeat that the topics discussed here were 
not intended to give a complete picture of mathematical problems 
which originated from problems of astronomical character. Neverthe
less, they may suffice as an illustration of the close relationship be
tween mathematics and astronomy in antiquity, a relationship which 
thereafter never lost its importance. "Astronomy proceeds to its 
demonstrations in no uncertain way, for it uses as its servants 
geometry and arithmetic, which it would not be improper to call a 
fixed standard of t ruth" (Synesius of Cyrene in his letter to Paeonius, 
about 400 A.D.; FitzGerald [10, p. 262]; cf. Almagest I, 1; Heiberg 
[1, p. 6, 17 ff.]). 

BIBLIOGRAPHY 

1. Apollonius of Perga, Treatise on conic sections, ed. in modern notation by T. L. 
Heath, Cambridge University Press, 1896. 

2. Autolyci de sphera quae movetur liber, de ortibus et occasibus libri duo, ed. Fr. 
Hultsch, Leipzig, Teubner, 1885. 

3. Paul Boelk, Darstellung und Prüfung der Mer cur theorie des Claudius Ptole-
maeus, Thesis, Halle, 1911. 

4. Delambre, Histoire de Vastronomie ancienne, Paris, 1817. 
5. J. Drecker, Das Planisphaerium des Claudius Ptolemaeus, Isis vol. 9 (1927) pp. 

255-278. 
6. , Des Johannes Philoponus Schrift über das Astrolab, Isis vol, 11 (1928) 

pp.15-44. 
7. , Hermannus Contractus, Über das Astrolab, Isis, vol. 16 (1931) pp. 200-

219. 
8. Pierre Duhem, Le système du monde, histoire des doctrines cosmologiques de 

Platon à Copernic, 5 vols., Paris, Hermann, 1913-1917. 
9. Euclidis opera omnia, vol. 8, Phaenomena et scripta musica, ed. H. Menge, 

Leipzig, Teubner, 1916. 
10. Augustine FitzGerald, The letters of Synesius of Cyrene, Oxford University 

Press, 1926. 



1040 O. NEUGEBAUER [November 

11. Heiberg, see Ptolemaeus [35]. 
12. Herons von Alexandria, Vermessungslehre und Dioptra, Griechisch unddeutsch 

von Hermann Schone, Leipzig, Teubner, 1903. 
13. Ernst Honigmann, Die sieben Klimata, Heidelberg, Winter, 1929. 
14. Arthur S. Hunt, Catalogue of the Greek papyri in the John Rylands Library in 

Manchester, vol. I, Literary texts {Nos. 1-61), Manchester, 1911. 
15. Paul Kempf, Untersuchungen iiber die Ptolemâische Theorie der Mondbewegung, 

Thesis, Berlin, 1878. 
16. Jacob Klein, Die griechische Logistik und die Entstehung der Algebra. II, 

Quellen und Studiën z. Geschichte der Mathematik B vol. 3 (1934) pp. 122-235. 
17. Erik J. Knudtzon and O. Neugebauer, Zwei astronomische Texte, K. huma-

nistiska Vetenskapssamfundets i Lund Ârsber. 1946-1947 II, pp. 77-88. 
18. Max Krause, Die Sphârik von Menelaos aus Alexandrien in der Verbesserung 

von Abu Nasr Mansûr b. 'All b. 'Iraq, Abhandlungen Gesellschaft der Wiss. zu 
Göttingen, Philol.-hist. KL, 3. Folge, vol. 17, 1936, Berlin, Weidmann. 

19. Franz Xaver Kugler, Die babylonische Mondrechnung, Freiburg, Herder, 1900. 
20. , Sternkunde und Sterndienst in Babel, Munster, Aschendorff, 2 vols., 

1907-1924; 3 Ergânzungshefte 1913-1935 (No. 3 by Johann Schaumberger). 
21. Albert Lejeune, Les tables de réfraction de Ptolêmêe, Annales de la Société 

scientifique de Bruxelles (1) vol. 60 (1946) pp. 93-101. 
22. P. Luckey, Das Analemma von Ptolemâus, Astron. Nachrichten vol. 230 (1937) 

cols. 17-46. 
23. Henri Michel, Traité de Vastrolabe, Paris, Gauthier-Villars, 1947. 
24. August Ferdinand Möbius, Gesammelte Werke, Leipzig, Hirzel, 1887. 
25. Hans v. M2ik and Friedrich Hopfner, Des Klaudios Ptolemaios Einfilhrung 

in die darstellende Erdkunde, Klotho vol. 5 (1938). 
26. O. Neugebauer, Vorgriechische Mathematik, Berlin, Springer, 1934. 
27. , Untersuchungen zur antiken Astronomie, III, Quellen und Studiën 

zur Geschichte der Mathematik, B vol. 4 (1937) pp. 193-346. 
28. , Über eine Methode zur Distanzbestimmung Alexandria—Rom bei 

Heron, Kgl. Danske Videnskabernes Selskab, Historisk-Filologiske Meddelelser vol. 
26, 2 (1938) and vol. 26, 7 (1939). 

29. , On some astronomical papyri and related problems of ancient geography. 
Transactions of the American Philosophical Society, n.s. vol. 32, 2 (1942) pp. 251-263. 

30. , The astronomical origin of the theory of conic sections, Proceedings of 
the American Philosophical Society vol. 92 (1948) pp. 136-138. 

31. , Astronomical cuneiform texts, in preparation. 
32. O. Neugebauer and A. Sachs, Mathematical cuneiform texts, American Oriental 

Series, vol. 29, New Haven, 1945. 
33. J. A. C. Oudemans, L'ôsung des sog. Pothenotschen, besser Snellius'schen Pro

blems von Ptolemaeus, Vierteljahrsschrift d. Astronomischen Gesellschaft. vol. 22 (1887) 
pp. 345-349. 

34. A. Pannekoek, Calculation of dates in the Babylonian tables of planets, Akademie 
van Wetenschappen te Amsterdam, Proceedings vol. 19 (1916) pp. 684-703. 

35. Claudii Ptolemaei Opera quae extant omnia, vol. I, Syntaxis mathematica, ed. 
J. L. Heiberg, Leipzig, Teubner, 1898, 1903. 

36. Des Claudius Ptolemâus Handbuch der Astronomie, aus dem Griechischen 
tibersetzt von Karl Manitius, Leipzig, Teubner, 1912, 1913. 

37. Composition mathématique de Claude Ptolémée, trad. par M. Halma et suivie 
des notes de of M. Delambre, Paris, 1813, 1816 [reprinted Paris, Hermann, 1927]. 



I948J MATHEMATICAL METHODS IN ANCIENT ASTRONOMY 1041 

38. Claudii Ptolemaei opera quae extant omnia, vol. II, Opera astronomica minora, 
ed. J. L. Heiberg, Leipzig, Teubner, 1907. 

39. Claudii Ptolemaei opera quae extant omnia, vol. I l l , 1 Apotelesmatica, ed. 
F. Boll-Ae. Boer, Leipzig, Teubner, 1940. 

40. Ptolemy, Tetrabiblos, transi, by F. E. Robbins, The Loeb Classical Library, 
1940. 

41. Claudii Ptolemaei geographia, ed. C. F. A. Nobbe, Leipzig, 1843. 
42. A. Rome, Le problème de la distance entre deux villes dans la Dioptra de Héron 

Annales de la Société scientifique de Bruxelles vol. 42 (1922-1923) Mémoires pp. 
234-258. 

43. , Commentaires de Pappus et de Thêon d1 Alexandrie sur V Almageste, 
Roma and Città del Vaticano, 1931, 1936, 1943 (Studi e Testi 54, 72, 106). 

44# 1 Les explications de Thêon d'Alexandrie sur le théorème de Ménêlas, 
Annales de la Société scientifique de Bruxelles, ser. A, vol. 53 (1933) CR pp. 39-50. 

45. Schau mberger, see Kugler [20 ]. 
46. Olaf Henric Schmidt, Studies on ancient sphaeric, Thesis, Brown University, 

1942. 
47. Paul Schnabel, Berossos und die babylonisch-hellenistische Liter atur, Leipzig, 

Teubner, 1923. 
48. C. J. Schumacher, Untersuchungen ilber die ptólem'dische Theorie der unteren 

Planeten (Merkur und Venus), Munster, Aschendorff, 1917. 
49. Theodosius Tripolites, Sphaerica, ed. J. L. Heiberg, Abhandlung der 

Gesellschaft der Wissenschaften zu Göttingen,Philologisch-Historische Klasse, NF 19, 
3 (1927), Berlin, Weidmann. 

50. Theonis Smyrnaei Platonici liber de astronomia, ed. Th. H. Martin, Paris, 
1849. 

51. Johannes Tropfke, Geschichte der Elementar-Mathematik, vols. 1 to 4 in 3d ed., 
1930-1940, vols. 5 to 7 in 2d ed., 1923, 1924, Berlin-Leipzig, De Gruyter. 

52. B. L. van der Waerden, Zur babylonischen Planetenrechnung, Eudemus vol. 1 
(1941) pp. 23-48. 

53. , Egyptian "Eternal Tables," Nederlandsch Akademie van Wetenschap
pen, Proceedings vol. 50 (1947) pp. 536-547, 782-788. 

54. Vitruvius, On Architecture, transi, by Frank Granger, The Loeb Classical 
Library, 1945. 

55. H. Vogt, Ver such einer Wiederher stellung von Hipparchs Fixsternverzeichnis, 
Astronomische Nachrichten vol. 224 (1925) cols. 17-54. 

56. Konrat Ziegler, Theodosius, Paulys Real-Encyclopâdie der classischen Alter-
tumswissenschaften, vol. 5 A, cols. 1930-1935. 

BROWN UNIVERSITY 


