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The compact city, as a sustainable concept, is intended to
augment the efficiency of urban function. However, previous
studies have concentrated more on morphology than on
structure. The present study focuses on urban structural
elements, i.e. urban hotspots consisting of high-density and
high-intensity socioeconomic zones, and explores the
economic performance associated with their spatial structure.
We use night-time luminosity data and the Loubar method to
identify and extract the hotspot and ultimately draw two
conclusions. First, with population increasing, the hotspot
number scales sublinearly with an exponent of approximately
0.50–0.55, regardless of the location in China, the EU or the
USA, while the intersect values are totally different, which
is mainly due to different economic developmental level.
Secondly, we demonstrate that the compactness of hotspots
imposes an inverted U-shaped influence on economic growth,
which implies that an optimal compactness coefficient does
exist. These findings are helpful for urban planning.
1. Introduction
Urban sprawl has been an area of active research over the
past decades. In Western countries, some studies suggest that
urban sprawl has led to environmental deterioration and social
problems [1–3]. China, at its present stage of rapid urbanization,
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is also undergoing severe urban expansion which has resulted in the emergence of ‘ghost towns’ [4].

Scholars have presented a sustainable concept, the ‘compact city’, to address these adverse effects.
This concept has attracted attention, particularly after the Commission of the European Communities
(CEC) advocated the compact city concept in 1990 as an approach to solve housing and
environmental problems [5]. Such cities are characterized by high-density and multifunctional land
use and a compact urban form [6,7]. However, as opponents point out, over-compactness can place
great pressure on the inner-city environment [8], leading to high house prices and social deterioration
[9]. Although the concept of sustainability represents a common and fundamental goal, the
appropriate compactness of an urban area is still contentious. The optimal level of compactness to
ensure satisfactory city performance requires further discussion.

Compactness is related not only to urban density but also to structure, specifically, the spatial
arrangement of urban hubs and centres. The research on urban structure originated from the Alonso–
Mills–Muth monocentric model [10–13] and Krugman’s core-peripheries urban model [14]. Both
models attribute the agglomeration of population to the economy of scales and transportation costs
for goods, and theoretically explain the forces driving the regional transition from isolated small
settlements to a concentrated core urban area. However, given that the transportation costs for goods
has been dramatically declining since 1960 [15], dispersion should have been dominating, resulting in
vanishing agglomerations and limitless sprawls in cities [16]. Multiple studies have demonstrated that
the urban spatial structure tends to be polycentric when the population size increases, specifically
with the declining transportation cost [17–19].

The economic influence of urban structures has attracted much attention. Some researchers found
polycentric spatial structures can promote urban economic growth [20,21], while others have found
that spatial structures actually have no effect on population or employment growth [22]. The degree
of polycentrism is typically based on the degree of the rank-size distribution [20,23,24]. When
measuring city compactness, scholars often focus on density, mixed-land use and urban form but
rarely consider the structural elements. Considering that networks and nodes allow urban components,
such as people and goods, to interplay [25], it is relevant to study the economic performance of
compact cities from the perspective of its structural components.

Urban hotspots (or activity centres), the most crowded places with social and economic activities, can
be considered as the structural components of an urban environment. Urban performance depends
on the appropriate proportion of density and links, so that every part is integrated into a region and
that regions are integrated into the complete city [26]. Since a city constitutes a complete integration,
hotspots must interact with one another to maintain the function of the urban network. For the
identification of hotspots, population is often gridded with different resolutions, based on which
researchers build algorithms to identify urban clusters [27,28]. The classic method to identify hotspots
is to find out the threshold of population density, as exemplified by the work done in Los Angeles
[29]. However, the choice of threshold is arbitrary and disputable. Louail et al. [27] have proposed a
non-parametric method based on the Lorenz curve, which can generate a threshold endogenously
according to the density distribution.

This paper uses night-time luminosity (NTL) data and the Lorenz curve method to study how
hotspots change with population, how hotspots are spatially organized and how the compactness of
hotspots affects urban economic growth, using a global combination of US, EU and Chinese cities.
2. Material and methods
2.1. Study cases
Our study uses a sample of cities from China, the USA and the EU to study the effect of hotspots
in economic development. Cities in China refer to municipal districts, as defined by the Database
of Global Administrative Areas (http://www.gadm.org/). The economic statistical data regarding
population and GDP originates from the Six National Population Census, China City Statistical Year Book.
Cities in the EU refer to Territorial Units for Statistics (NUTS), a geocode standard developed by the
EU for referencing the subdivisions of countries for statistical purposes (http://ec.europa.eu/eurostat/
data/). As for the USA, cities refer to Metropolitan Statistical Areas, as defined by the Bureau of
Economic Affairs (https://www.bea.gov/, https://www.census.gov/). The number of urban areas
considered in the USA, the EU and China are, respectively, 349, 239 and 276. Figure 1 presents all
cities used in this study, including their definition and the hotspots identified.

http://www.gadm.org/
http://www.gadm.org/
http://ec.europa.eu/eurostat/data/
http://ec.europa.eu/eurostat/data/
http://ec.europa.eu/eurostat/data/
https://www.bea.gov/
https://www.bea.gov/
https://www.census.gov/
https://www.census.gov/


US cities EU cities

Chinese cities

(a) (b)

(c)

city boundary

hotspot area

Figure 1. Location of cities used in this study across (a) the USA, (b) the EU and (c) China. The number of urban areas considered
are 349, 239 and 276, respectively. Hotspots are shown inside the city boundary.
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2.2. Night-time luminosity data
Understanding urban environments involves the collection and analysis of high-resolution
socioeconomic data [20,30] or telecommunication data [27], both of which are costly to acquire and
sometimes lack timely updates. In particular, in developing economies, such datasets may be sampled
too coarsely or are unavailable to the public. Night-time luminosity (NTL) data, which do not have
the previous limitations, have been used to explore urban economic activities, such as mapping the
urban transition [31], measuring urban growth [32,33] analysing urban spread [34] and analysing
the spatial heterogeneity of human activities within a city [35].

In this study, we use global-radiance-calibrated night-time light (GRCNL) collected by the Defence
Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), which has a spatial
resolution of 30 arc-seconds (approx. 1000 m of earth surface) as provided by the Nation Geophysical
Data Center (https://ngdc.noaa.gov/). Ordinary DMSP-OLS night-time light has a problem of
saturation in the bright cores of urban centres, with a maximum pixel value of 63, which makes it
difficult to identify real hotspots. To solve this problem, NOAA/NGDC also publishes GRCNL with
no sensor saturation. These images are produced by merging fixed-gain images, blending stable light
as well as inter-satellite calibration (https://www.ngdc.noaa.gov/eog/dmsp/radcal_readme.txt).
Therefore, it is comparable across different pixels. Empirical studies have shown that NTL can be used
to map local economic activities [36–38], so that the spatial distribution of luminosity across the entire
city can reveal the underlying urban form. As a result, urban hotspots can potentially be identified
and extracted from NTL data.
2.3. Hotspot identification
A simple method to identify hotspots is to arbitrarily choose a threshold and any grid with its luminosity
larger than this threshold would be considered a hotspot. However, setting a universal threshold
could over- or under-estimate the numbers of hotspots due to the cities’ heterogeneity in luminosity.

https://ngdc.noaa.gov/
https://ngdc.noaa.gov/
https://www.ngdc.noaa.gov/eog/dmsp/radcal_readme.txt
https://www.ngdc.noaa.gov/eog/dmsp/radcal_readme.txt
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By contrast, Louail et al. [27] presented a method based on the Lorenz curve to generate a threshold for

each city using cell phone traces. The quantile threshold can be calculated by the following formula:

F ¼ 1� m

rm
, ð2:1Þ

where F is the quantile threshold, μ is the average density and ρm is the maximum density. This criterion
does not only depend on the average value of the density but also on the dispersion: as ρm increases, the
value of F increases and therefore the number of identified hotspots decreases. Then, we can get the
hotspot number μ/ρm.

Furthermore, assuming that densities are ordered decreasingly ρ1 > ρ2 >… > ρn, then, unit 1 is a
complete hotspot, and based on the proportion to ρ1, unit 2 is regarded as a ρ2/ρ1 hotspot. ρn/ρ1
suggests unit n has the probability of ρn/ρ1 to be the same main hotspot as unit 1. Accordingly, unit i
adds ρi/ρ1 to the total hotspot number. Therefore, we find the total hotspot number to be:

Ct ¼
XN

n¼1

ri
r1

: ð2:2Þ

The proportion of hotspots is Ct/N, equal to μ/ρ1, which is the same as the result from the Loubar
method.

This method offers another advantage in that it is not sensitive to city boundaries. Even if the
statistical boundaries were to overstep the actual limits (covering much more non-constructive land in
the outskirts), the result would be affected only minimally because the non-urbanized area features
minimal light. This is especially relevant for the case of Chinese cities, where city boundaries can
cover rural areas.
2.4. Characterizing the compactness of hotspots
Our hypothesis is that compactness of hotspots could be of significance to the economic performance of
an urban environment. Following the work by Angel et al. [39], we develop two indexes to measure its
compactness. Considering that a circle is the most compact shape, the indexes are based on comparing a
metric of the set of hotspots with the same metric in a circle with the same area:

(1) Proximity index, PI, is the ratio between the diameter of a circle with the same area as the set of
hotspots and the maximum distance between hotspots:

PI ¼ Dd

Dm
, ð2:3Þ

where PI is the proximity index, Dd is the diameter of the circle of equal area to the set of hotspots and
Dm is the maximum distance between hotspots.

(2) Agglomeration index, AI, is the ratio between the average distance of hotspots to the geometric centre
in a circle with the same area and the average distance to the corresponding geometric centre of
the hotspots:

AI ¼ De

Dh
, ð2:4Þ

where AI is the agglomeration index, De is the average distance of hotspot and the geometric centre of
the circle of equal area that the set of hotspots and Dh is the average distance of the hotspots to their
corresponding geometric centre.

Both indexes quantify how hotspots sprawl over an urban region. The value of these two indicators range
from 0 to 1; for cities with values close to 1, hotpots are close to each other (they are compact). By
contrast, a value close to 0 indicates that hotspots are dispersed over the entire city. Consider the
example presented in figure 2. Figure 2a (left) shows hotspots represented by red squares (raster units
in the original NTL data). To measure its compactness, we compare it with the circle (figure 2a right)
that has the same area as the actual set of hotspots. To calculate distances, we convert hotspots
(squares) to points. In figure 2a, the maximum distance between hotspots is defined by the distance
between points A and B: that is Dm =DAB = 10√2. The diameter of the circle of equal area can
be measured by the distance between points C and D: that is Dd =DCD = 10. Then PI =Dd/Dm = 0.71.
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Figure 2. Example of a circle with the same area as the original set of hotspots and three examples representing high, middle and
low compactness, respectively. (a) Hotspots are converted from raster units, the circle has the same area as the actual hotspot area:
89 units; (b) high compactness: both PI and AI approximate to 1; (c) middle compactness: PI is 0.68, while AI is 0.81; and (d ) low
compactness: PI is 0.4, while AI is 0.39.
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The procedure of calculating AI is similar to that of PI. Three examples representing low, middle and high
compact shapes are presented in figure 2b, c and d, respectively.
3. Results
First, we present the results regarding urban hotspot and population, which justify the use of NTL data.
After that, we calculate the compactness index of every city considered, and visualize the relation
between GDP per square kilometre (km2) and compactness across the USA, the EU and China.
Finally, using least-squares, the inverted U-shaped effect of hotspot compactness on urban economic
growth is presented.

3.1. Relation between number of hotspots and population
Louail et al. [27] demonstrated empirically that the number of hotspots scales sublinearly with the
population size using Spanish anonymized and aggregated mobile phone data, which in turn
corresponds to Louf & Barthelemy’s theoretical work [18]. However, the paper does not show whether
cities of other countries also follow such scaling law, especially for developing countries. In order to
validate the use of NTL data for studying the structures of cities, we re-execute the experiment in
Spanish cities. After that, we apply NTL data to American, European and Chinese cities, in order to
find whether the sublinear relation is also valid.

Accordingly, the number of hotspots N scales as

N ¼ aPb, ð3:1Þ
where N is the number of urban hotspots and P is the population of the city.
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Figure 3. Sublinear relation using NTL data between the number of hotspots: (a) population for Spanish cities; (b) population for
USA, EU and Chinese cities independently; (c) population and all three geographical areas; (d ) population and Chinese cities for the
study of outliers; (e) GDP for all three geographical areas and ( f ) GDP and each geographical area individually.
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Figure 3a presents the scaling factor for Spanish cities using NTL. In this case, the scaling exponent
is approximately 0.55, very similar to Louail et al.’s [27] result of 0.54. This result indicates that NTL data
can be a relevant alternative for research on urban spatial structure, at least when compared with cell
phone traces. Considering this result, we extend the NTL data to study the urban structure of other
cities using hotspots. Figure 3b presents the scaling exponents for China, the EU and the USA with
exponent values of 0.53, 0.50 and 0.55, respectively. These results reinforce the sublinear relation
between the number of hotspots and city population for the three geographical areas considered.

Louf & Barthelemy [18] explain the appearance of subcentres as an effect of traffic congestion, and the
number of subcentres scales sublinearly with the population size with a factor of μ/(μ + 1), where μ is the
resilience of the transportation network to congestion. Our findings are similar to this theory; however,
compared with its empirical work that shows a scaling exponent of 0.64, ours is smaller, ranging from
0.50 to 0.55. This difference may result from the definition of subcentre (hotspot) and grid value.
Specifically, Louf & Barthelemy use a threshold method to identify subcentres, while this paper uses
an endogenous method (Loubar method). The literature also shows that patent numbers and total
wages [40,41] scale superlinearly with city population and that, on the other hand, gasoline sales [40],
CO2 emissions [42] and street length [43] scale sublinearly as a function of population size. In our
context, urban hotspots also follow the sublinear scaling law. This sublinear relation suggests that,
with population increasing by 100%, hotspot number just needs to increase by 50–55%. That is to say,
the larger a city is, the more people a hotspot can support on average.

Compared with the similarity in the scaling values, the intersect values of these geographical areas
differ greatly from one another. As portrayed in figure 3b, given a specific population, like one
million, the fitted values of hotspots numbers are different among these three areas. Cities in the USA
need the highest number of hotspots (724), while cities in China need the least (130). China has a total
population of 1.3 billion, which contributes to larger cities. Besides, owing to the strict regulation
on land use, cities become more agglomerated, which leads to denser and fewer hotspots. In the USA,
the more cities sprawl, the more hotspots they need. As shown in figure 3c, globally, for the three
areas considered, population does not explain this variation in the number of hotspots (R2 = 9%).

One of the most relevant contributors to this phenomenon, we hypothesize, is the gap between the
economic development of the geographical areas considered. China is a developing economy, with a
GDP per capita of 4000 Euro in 2010, which is smaller than those in USA and Europe. With Chinese
economy improving its GDP, cities might tend to expand with time. As Angel et al. [44] empirically
demonstrated, cities in higher income countries tend to feature lower population densities. To validate
our hypothesis, we correlate number of hotspots to GDP and compare the result with population.
Figure 3e presents the same study but considering GDP for the three areas considered, and the results
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Figure 4. Two examples of outliers in China. (a) Dongguan. An outlier caused by development patterns, whose towns develop
alone; and (b) Yichun, a valley city lying in a long narrow valley with many subcentres.
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seem to indicate (R2 = 64%) that GDP can explain the majority of the variation in the number of hotspots.
The same can be said when each geographical area is considered individually in figure 3f with values for
R2 of 80%, 52%, 32% for the USA, China and the EU, respectively. Our results indicate that GDP, rather
than population size, has a global predictive power for the generation of hotspots.

Figure 3f also presents a set of relevant outlier cities, whose numbers of hotspots are unusually larger.
Focusing on Chinese cities, in order to identify outliers, we calculate and normalize the residuals for each
city in the regression analysis and classify cities as outliers if the residuals lie out of [−2,2]. As a result, we
identified 15 outliers among 276 of China’s cities, which are presented in figure 3f. We focus on two
examples, Dongguan and Yichun, as examples to study why cities become outliers.

Dongguan was one of the first cities to open to foreign investment since China’s reform policy was
implemented. From that time on, towns in this city launched their urbanization process independently,
even competing with each other. Specialized industrial towns stand out so much that no strong city core
can be identified; thus, they constitute groups of towns rather than complete cities, and as a result
their hotspots are over-represented for their population size (figure 4a). Yichun is a valley city, lying
in a long and narrow valley, which makes it challenging to establish a strong centre. Instead, every
district develops its own centre, which are then linearly connected and as a result, hotspots tend to be
over-represented (figure 4b). This limited study indicates that outliers might arise primarily from
development patterns or topography, as exemplified by Dongguan and Yichun, respectively.
3.2. Urban hotspot compactness
This section analyses how hotspots are organized spatially in urban areas. Figure 5 presents the
frequency distribution of the PI and the AI for the cities in the USA, the EU and China. For the PI,
the median value for China (figure 5c), the USA (figure 5a) and the EU (figure 5b) is 0.75, 0.49, and
0.43, respectively, while for the AI, the median values are 0.92, 0.78 and 0.69 for China (figure 5f ), the
USA (figure 5d ) and the EU (figure 5e). These values indicate that hotspots tend to be more compact
in Chinese cities followed by the USA and the EU.

This difference in both indexes may be the result of the urbanization gap between the geographical
areas considered. Developed economies have reached a stable urbanization level with an urbanization
rate over 75%, even experiencing suburbanization and counter-urbanization, which contributes to the
dispersal of hotspots. However, developing economies, like China, are still in a rapid urbanizing
process. The urbanization rate in China reached 57.4% in 2016. According to the S-shaped curve [45]
used to depict the urbanization process, when the urbanization rate exceeds 70%, the urbanization
development slows down and reaches its stage of mature development. Most developed economies
have reached such mature stage while China is in its rapidly developing stage. China has a
population of 1.3 billion, which means cities are supposed to absorb 0.3 billion more rural population
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in the future when it reaches the urbanization rate of 70%. During the rapidly developing stage, the force
of centralization is much stronger than that of decentralization. Specifically, urban service sectors, such as
education, health care, retail and so on, usually appear in the inner city, which may force the hotspots to
be more compact.
3.3. Non-monotonic effect of hotspot compactness on urban economic growth
Our hypothesis is that hotspot compactness can be of significance to economic performance. In order to
validate it, we correlate compact indexes to GDP per km2 and evaluate the effects of compactness on
economic performance across the three geographical zones. Figure 6 presents the relation between PI
and AI with log (GDP per km2) for the USA (figure 6a,d); China (figure 6b,e) and the EU (figure 6c,f ).
The dominant relation in the majority of cases is an inverted U-shaped curve. That is especially the
case the USA, where the inverted U-shaped relationship is quite strong (R2 = 0.16 for PI and R2 = 0.13
for AI). As for China, the inverted U-shaped effect is also visible, with R2 = 0.02 for both proximity
and AI. In the case of the EU, the U-shaped effect is weaker for the PI and not present for the AI.

In order to model the influence of hotspot compactness on urban economic growth we use a multiple
regression analysis. Urban spatial structure transforms relatively slowly over time. Accordingly, we
assume that the number of hotspots and their average spacing is exogenous to economic growth. We
add population as a control variable in order to estimate the significance of the inverted U-shaped
effect. The global model is as follows:

lnY ¼ b1 þ b2lnPopþ b3Comþ b4Com
2 þ e, ð3:2Þ

where Y is the urban GDP per km2, Pop is the population size and Com is the compactness index.
We focus our study in the three areas considered and for each one of them obtain five variations of the

global regression model previously presented. Model 1 only considers population; Model 2 considers
population plus the PI; Model 3 adds to Model 2 a quadratic term to the PI to check the relevance of
the inverted U-shaped effect; Model 4 considers population plus the AI and Model 5 adds the
quadratic element of the AI to Model 4.
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Figure 6. The inverted U-shaped curves for log (GDP per km2) and compact indexes. (a,d ) USA cities; both compactness indexes
indicate a significant inverted U-shaped effect in the USA city system. (b,e) Chinese cities; the inverted U-shaped curves is visible but
the effect is not significant. (c,f ) EU cities; PI shows a stronger inverted U-shaped effect than AI.

Table 1. Regression results for the USA.

dependent variable: GDP per km2 (log)

(1) (2) (3) (4) (5)

population (log) 0.652*** 0.657*** 0.599*** 0.646*** 0.605***

PI 0.497*** 6.340***

PI2 −5.068***
AI 0.549*** 7.618***

AI2 −5.235***
constant 6.372*** 6.048*** 5.329*** 6.046*** 4.407***

observations 349 349 349 349 349

R2 0.461 0.472 0.528 0.472 0.516

AIC 783.21 778.13 741.04 777.58 749.36

F statistic 296.534*** 154.416*** 128.440*** 154.929*** 122.705***

*p < 0.1; **p < 0.05; ***p < 0.01.
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Table 1 presents the USA’s regression results for the five variations of the global model, one per
column. The results of Model 1 indicate that population exerts a significantly positive influence on the
economic growth, while Model 2 shows that the regressive coefficient of the PI is significantly
positive, which indicates that cities that are more compact tend to have higher GDP per km2. As for
Model 3, the quadratic term is significantly negative, and both coefficients of the PI and its quadratic
term are statistically significant, which suggests that there exists an inverted U-shaped influence. As
expected for Model 4, the regressive coefficient for the AI is also positive, highlighting again its
influence on economic growth. In Model 5, the coefficient of the quadratic term is significantly
negative, while the coefficient of AI is significantly positive, which again suggests the inverted
U-shaped influence. Model 3 has the smallest AIC (741.04) and biggest R2 (0.528), which indicates that



Table 2. Regression results for China.

dependent variable: GDP per km2 (log)

　 (1) (2) (3) (4) (5)

population (log) 0.777*** 0.800*** 0.783*** 0.792*** 0.775***

PI 0.520* 3.854**

PI2 −2.696*
AI 0.547 3.992*

AI2 　 −2.478
constant 4.078*** 3.413*** 2.775** 3.411*** 2.598**

observations 276 276 276 276 276

R2 0.257 0.266 0.276 0.263 0.269

AIC 843.9284 842.6548 840.8152 843.474 843.2493

F statistic 94.658*** 49.348*** 34.507*** 48.797*** 33.408***

*p < 0.1; **p < 0.05; ***p < 0.01.

Table 3. Regression results for the EU.

dependent variable: GDP per km2 (log)

(1) (2) (3) (4) (5)

population (log) 0.460*** 0.434*** 0.438*** 0.328*** 0.319***

PI 2.960*** 7.501***

PI2 −4.084***
AI 2.251*** 0.973

AI2 1.004

constant 9.477*** 8.400*** 7.303*** 9.760*** 10.238***

observations 239 239 239 239 239

R2 0.083 0.373 0.403 0.256 0.258

AIC 744.8238 656.0281 646.2218 696.6809 698.2188

F statistic 21.348*** 70.073*** 52.840*** 40.655*** 27.193***

*p < 0.1; **p < 0.05; ***p < 0.01.
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is the best model that reveals the inverted U-shaped effect. Accordingly, when holding the other variables
unchanged, a larger compactness coefficient corresponds to hotspots that are more compact and a greater
advantage in terms of economic growth. However, after the compactness reaches a certain high level, its
marginal effect on urban economic growth would become negative, suggesting an optimal compactness
does exist. The optimal compactness coefficients of PI and AI are, respectively, 0.63 and 0.73.

When it comes to China, the inverted U-shaped effect is not as relevant but still statistically significant
as showed in table 2. In this case, Model 3 also has the smallest AIC but its R2 only increases 1% from
Model 2. In the case of China, the quadratic term of the AI of Model 5 is not statistically significant. The
results for the EU are presented in table 3 and similar to the previous case. Model 3 has the smallest AIC
and in Model 5, the AI does not have a significant influence on GDP per km2. These results also indicate
that the PI may be more relevant to measure spatial compactness.

The results obtained in the USA, China and, to a lesser extent, in the EU, seem to validate the inverted
U-shaped effect on economic growth of hotspot compactness. As a result, an optimal compactness for
economic growth does exist that imposes the maximum positive influence on economic growth.
Excessively close distances can bring congestion, but excessively large distances hinder connectivity.
Therefore, hotspot spatial structure should be suitably compact.
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4. Conclusion and discussion

Previous literature on the concept of compact city has focused mainly on the morphology of the urban
environment. In this paper, we have presented a study of the effect of urban structural elements
(hotspots) on the economic performance of the city. For that purpose, we used NTL data, which
has the advantage of being globally available when compared with other sources such as cell phone
traces or census data. Using the Loubar method, we identified and extracted hotspots of 864 cities in
China, the EU and the USA. By comparison with the work by Louail et al. [27], that identified
hotspots using cell phone traces in Spanish cities, we showed that NTL is an alternative data source
for identifying hotspots.

The paper shows that the relationship between the number of hotspots and urban population
follows a sublinear scaling law. With increasing population, hotspots scale sublinearly, with exponents
of 0.50–0.55. Although China, the EU and the USA differ in population size, urbanization stage and
economic development level, the exponent is nearly the same in the three cases. This result also
supports the finding that urban spatial structure tends to be more polycentric with increasing
population. We also found that the intercept values differ greatly among these three zones, which
suggests that population by itself cannot explain the variation in the number of hotspots. Instead,
urban economic size, represented by GDP, could be a more explanatory element for predicting the
generation of hotspots.

The regression analysis indicated a U-shaped effect of hotspots spatial compactness on urban
economic development; nevertheless, its visualization showed heterogeneous results. Specifically, the
inverted U-shaped effect held for USA and EU cities, but for Chinese cities, the effect was not as
clear. That can be explained mainly by two reasons: (i) in China, city boundaries are administrative
rather than economic. These boundaries include areas that might not necessarily have strong
economic interactions with the core urban areas, leading to a lower level of the GDP per km2 and
reducing the inverted U-shaped effect. (ii) AI might not be suitable for measuring compactness in this
context, because it could overstate the hotspots spatial compactness. For future work, it would be
relevant to construct city boundaries based on commute patterns to revisit the spatial compactness
effect on urban economic growth in China. Also, alternative compactness measures could be
constructed to test the robustness of the inverted U-shaped effect.
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